login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084367
a(n) = n*(2*n+1)^2.
2
0, 9, 50, 147, 324, 605, 1014, 1575, 2312, 3249, 4410, 5819, 7500, 9477, 11774, 14415, 17424, 20825, 24642, 28899, 33620, 38829, 44550, 50807, 57624, 65025, 73034, 81675, 90972, 100949, 111630, 123039, 135200, 148137, 161874
OFFSET
0,2
FORMULA
a(n) = n*( n*(2*n+1)+1 + n*(2*n+1)+2 + ... + n*(2*n+1)+2*n ).
a(n) = n*A016754(n); n*a(n) = A014105(n)^2.
G.f.: x*(9+14*x+x^2)/(1-x)^4. - Colin Barker, Jun 30 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012
Sum_{n>=1} 1/a(n) = 4 - 2*log(2) - Pi^2/4. - Amiram Eldar, Jul 21 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) + 2*G - 4, where G is Catalan's constant (A006752). - Amiram Eldar, Feb 08 2022
E.g.f.: exp(x)*x*(9 + 16*x + 4*x^2). - Stefano Spezia, Sep 27 2023
EXAMPLE
a(3) = 147 since 147 = 3*7^2.
MATHEMATICA
CoefficientList[Series[x*(9+14*x+x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 04 2012 *)
PROG
(Magma) I:=[0, 9, 50, 147]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Charlie Marion, Jun 22 2003
STATUS
approved