OFFSET
1,2
COMMENTS
The Fibonacci binary number 1.41027879720... is known to be transcendental.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..20000
David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, and Carl Pomerance, On the binary expansions of algebraic numbers, Journal de Théorie des Nombres de Bordeaux 16 (2004), 487-518.
J. H. Loxton and A. van der Poorten, Arithmetic properties of certain functions in several variables III, Bulletin of the Australian Mathematical Society, Volume 16, Issue 01, February 1977, pp 15-47.
A. J. Van Der Poorten and J. Shallit, A specialised continued fraction, Can. J. Math. 45 (1993), 1067-79.
EXAMPLE
1.410278797207865891794043024471063...
MATHEMATICA
RealDigits[N[Sum[1/2^Fibonacci[k], {k, 1, Infinity}], 120]][[1]] (* Amiram Eldar, Jun 12 2023 *)
PROG
(PARI) suminf(k=1, 1/2^fibonacci(k)) \\ This gives the Fibonacci binary number, not the sequence
(PARI) default(realprecision, 20080); x=suminf(k=1, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b084119.txt", n, " ", d)); \\
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ralf Stephan, May 18 2003
STATUS
approved