login
A084119
Decimal expansion of the Fibonacci binary number, Sum_{k>0} 1/2^F(k), where F(k) = A000045(k).
11
1, 4, 1, 0, 2, 7, 8, 7, 9, 7, 2, 0, 7, 8, 6, 5, 8, 9, 1, 7, 9, 4, 0, 4, 3, 0, 2, 4, 4, 7, 1, 0, 6, 3, 1, 4, 4, 4, 8, 3, 4, 2, 3, 9, 2, 4, 5, 9, 5, 2, 7, 8, 7, 7, 2, 5, 9, 3, 2, 9, 2, 4, 6, 7, 9, 3, 0, 0, 7, 3, 5, 1, 6, 8, 2, 6, 0, 2, 7, 9, 4, 5, 3, 5, 1, 6, 1, 2, 3, 3
OFFSET
1,2
COMMENTS
The Fibonacci binary number 1.41027879720... is known to be transcendental.
LINKS
David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, and Carl Pomerance, On the binary expansions of algebraic numbers, Journal de Théorie des Nombres de Bordeaux 16 (2004), 487-518.
J. H. Loxton and A. van der Poorten, Arithmetic properties of certain functions in several variables III, Bulletin of the Australian Mathematical Society, Volume 16, Issue 01, February 1977, pp 15-47.
A. J. Van Der Poorten and J. Shallit, A specialised continued fraction, Can. J. Math. 45 (1993), 1067-79.
EXAMPLE
1.410278797207865891794043024471063...
MATHEMATICA
RealDigits[N[Sum[1/2^Fibonacci[k], {k, 1, Infinity}], 120]][[1]] (* Amiram Eldar, Jun 12 2023 *)
PROG
(PARI) suminf(k=1, 1/2^fibonacci(k)) \\ This gives the Fibonacci binary number, not the sequence
(PARI) default(realprecision, 20080); x=suminf(k=1, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b084119.txt", n, " ", d)); \\
CROSSREFS
Cf. A000045, A010056, A079586, A181313 (continued fraction), A124091 (essentially the same).
Sequence in context: A096501 A062862 A206799 * A166073 A290724 A283879
KEYWORD
nonn,cons
AUTHOR
Ralf Stephan, May 18 2003
STATUS
approved