login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083844
Number of primes of the form x^2 + 1 < 10^n.
18
2, 4, 10, 19, 51, 112, 316, 841, 2378, 6656, 18822, 54110, 156081, 456362, 1339875, 3954181, 11726896, 34900213, 104248948, 312357934, 938457801, 2826683630, 8533327397, 25814570672, 78239402726, 237542444180, 722354138859, 2199894223892
OFFSET
1,1
COMMENTS
It is conjectured that there are infinitely many primes of the form x^2 + 1 (and thus this sequence never becomes constant), but this has not been proved.
These primes can be found quickly using a sieve based on the fact that numbers of this form have at most one primitive prime factor (A005529). The sum of the reciprocals of these primes is 0.81459657... - T. D. Noe, Oct 14 2003
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.
LINKS
EXAMPLE
a(3) = 10 because the only primes or the form x^2 + 1 < 10^3 are the ten primes: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677.
MATHEMATICA
c = 1; k = 2; (* except for the initial prime 2, all X's must be odd. *) Do[ While[ k^2 + 1 < 10^n, If[ PrimeQ[k^2 + 1], c++ ]; k += 2]; Print[c], {n, 1, 20}]
CROSSREFS
Cf. A005529 (primitive prime factors of the sequence k^2+1).
Sequence in context: A219555 A263738 A011963 * A026554 A259132 A369391
KEYWORD
nonn
AUTHOR
Harry J. Smith, May 05 2003
EXTENSIONS
Edited by Robert G. Wilson v, May 08 2003
More terms from T. D. Noe, Oct 14 2003
a(17)-a(22) from Robert Gerbicz, Apr 15 2009
a(23)-a(25) from Marek Wolf and Robert Gerbicz (code from Robert, computation done by Marek) Robert Gerbicz, Mar 13 2010
a(26)-a(28) from Jon Grantham, Jan 18 2017
a(28) corrected by Jon Grantham, Jan 30 2018
STATUS
approved