Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 26 2023 08:43:44
%S 1,2,7,77,141,151,161,242,252,262,777,7777,14041,14141,14241,15051,
%T 15151,15251,16061,16161,16261,24042,24142,24242,25052,25152,25252,
%U 26062,26162,26262,77777,777777,1404041,1405041,1406041,1414141,1415141
%N Palindromes k such that 3k + 1 is also a palindrome.
%C From _Robert Israel_, Feb 23 2023: (Start)
%C Includes A002281. It appears that the only terms with an even number of digits are in A002281. All other terms of more than 1 digit start with 14, 15, 16, 24, 25 or 26. It also appears that no terms contain the digits 3, 8 or 9, and the only ones that contain 7 are A002281. (End)
%H Robert Israel, <a href="/A083829/b083829.txt">Table of n, a(n) for n = 1..6576</a>
%p ispali:= proc(n) local L;
%p L:= convert(n,base,10);
%p L = ListTools:-Reverse(L)
%p end proc:
%p revdigs:= proc(n) local L,i;
%p L:= convert(n,base,10);
%p add(L[-i]*10^(i-1),i=1..nops(L))
%p end proc:
%p palis:= proc(d) local r;
%p if d::even then [seq](revdigs(r)+10^(d/2)*r,r=10^(d/2-1)..10^(d/2)-1)
%p else [seq](revdigs(floor(r/10))+10^((d-1)/2)*r, r=10^((d-1)/2)..10^((d+1)/2)-1)
%p fi
%p end proc:
%p [seq(op(select(t -> ispali(3*t+1), palis(d))),d=1..7)]; # _Robert Israel_, Feb 23 2023
%t Select[Range[15*10^5],AllTrue[{#,3#+1},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Feb 14 2018 *)
%Y Cf. A083830.
%K base,nonn
%O 1,2
%A _Amarnath Murthy_ and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003
%E Corrected and extended by _Ray Chandler_, May 21 2003