login
A083451
(n concatenated n times) - n^n.
2
0, 18, 306, 4188, 52430, 620010, 6954234, 72111672, 612579510, 10101010091010101010, 1111111110825799440500, 121212121203205111672956, 13131313131010256206539060, 1414141414130302134588583398
OFFSET
1,2
COMMENTS
Amarnath Murthy conjectured that all terms are positive for n>1. This is true. Consider the number of digits. There are n*ceiling(log_10(n+1)) digits in the concatenation, but only log_10(n^n)=n*log_10(n) in n^n. Therefore the terms are never negative. - Hauke Worpel (hw1(AT)email.com), Jun 03 2003
LINKS
FORMULA
a(n) = A000461(n)-A000312(n). - David Wasserman, Nov 10 2004
EXAMPLE
a(4) = 4444 - 4^4 = 4188.
MATHEMATICA
Table[FromDigits[Flatten[IntegerDigits/@PadRight[{}, n, n]]]-n^n, {n, 15}] (* Harvey P. Dale, Mar 25 2012 *)
CROSSREFS
Cf. A083452.
Sequence in context: A193317 A161599 A273434 * A162804 A097831 A342885
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 01 2003
EXTENSIONS
More terms from Hauke Worpel (hw1(AT)email.com), Jun 03 2003
More terms from David Wasserman, Nov 10 2004
STATUS
approved