login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082981
Start with the sequence S(0)={1,1} and for k>0 define S(k) to be I(S(k-1)) where I denotes the operation of inserting, for i=1,2,3..., the term a(i)+a(i+1) between any two terms for which 4a(i+1)<=5a(i). The listed terms are the initial terms of the limit of this process as k goes to infinity.
5
1, 2, 3, 4, 9, 14, 19, 24, 53, 82, 111, 140, 309, 478, 647, 816, 1801, 2786, 3771, 4756, 10497, 16238, 21979, 27720, 61181, 94642, 128103, 161564, 356589, 551614, 746639, 941664, 2078353, 3215042, 4351731, 5488420, 12113529, 18738638, 25363747
OFFSET
1,2
COMMENTS
Conjectures:
(1) the section {a(2n+1)}={1,3,9,19,53,111,...} is A077442, the terms of which are solutions of ax^2+7 = a square,
(2) the section {a(4n+1)}={1,9,53,309,1801,...} is A038761,
(3) the section {a(4n+2)}={2,14,82,478,2786,...} is A077444, the terms of which are solutions of 2x^2+8 = a square,
(4) the sequence {a(4n+2)/2}={1,7,41,239,1393,...} is A002315, the terms of which are solutions of 2x^2+2 = a square,
(5) the section {a(4n+4)}={4,24,140,816,4756,...} is A005319, the terms of which are solutions of 2x^2+4=a square,
(6) the sequence {a(4n+4)/4}={1,6,35,204,1189,...} is A001109, the terms of which are solutions of 8x^2+1=a square.
FORMULA
It appears that a(n)=6a(n-4)-a(n-8).
Empirical g.f.: x*(x+1)^2*(x^2+1)^2/((x^4-2*x^2-1)*(x^4+2*x^2-1)). - Colin Barker, Nov 06 2014
MATHEMATICA
Most@Nest[If[#[[-2]] >= 4 #[[-1]], Append[Most@#, #[[-1]] + #[[-2]]], Insert[#, #[[-1]] + #[[-2]], -2]] &, {1, 1}, 47] (* Ivan Neretin, Apr 27 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
John W. Layman, May 28 2003
STATUS
approved