login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082977
Numbers that are congruent to {0, 1, 3, 5, 6, 8, 10} mod 12.
18
0, 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 30, 32, 34, 36, 37, 39, 41, 42, 44, 46, 48, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 66, 68, 70, 72, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 102, 104, 106, 108, 109, 111
OFFSET
1,3
COMMENTS
James Ingram suggests that this (with the initial 0 omitted) is the correct version of Fludd's sequence, rather than A047329. See also A083026.
Key-numbers of the pitches of a Hypophrygian mode scale on a standard chromatic keyboard, with root = 0. A Hypophrygian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone B. - James Ingram (j.ingram(AT)t-online.de), Jun 01 2003
REFERENCES
Robert Fludd, Utriusque Cosmi ... Historia, Oppenheim, 1617-1619.
LINKS
Robert Fludd, Page 158 of "Utriusque Cosmi" in Beinecke Rare Book and Manuscript Library Photonegatives Collection.
Wikipedia, Robert Fludd
FORMULA
G.f.: x*(1 + x + 2*x^4)*(1 + x + x^2)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - R. J. Mathar, Sep 17 2008
From Wesley Ivan Hurt, Jul 19 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 105 - 2*(n mod 7) - 2*((n + 1) mod 7) + 5*((n + 2) mod 7) - 2*((n + 3) mod 7) - 2*((n + 4) mod 7) + 5*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.
a(7k) = 12k - 2, a(7k-1) = 12k - 4, a(7k-2) = 12k - 6, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 11, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
a(n) = floor(12*(n-1)/7). - Federico Provvedi, Oct 18 2018
MAPLE
A082977:=n->12*floor(n/7)+[0, 1, 3, 5, 6, 8, 10][(n mod 7)+1]: seq(A082977(n), n=0..100); # Wesley Ivan Hurt, Jul 19 2016
MATHEMATICA
CoefficientList[Series[x(1 + x + 2*x^4)(1 + x + x^2)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2013 *)
fQ[n_] := MemberQ[{0, 1, 3, 5, 6, 8, 10}, Mod[n, 12]]; Select[ Range[0, 111], fQ] (* Robert G. Wilson v, Jan 07 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 5, 6, 8, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *)
Floor@Range[0, 2^8, 12/7] (* Federico Provvedi, Oct 18 2018 *)
PROG
(Haskell)
a082977 n = a082977_list !! (n-1)
a082977_list = [0, 1, 3, 5, 6, 8, 10] ++ map (+ 12) a082977_list
-- Reinhard Zumkeller, Jan 07 2014
(Magma) [n : n in [0..150] | n mod 12 in [0, 1, 3, 5, 6, 8, 10]]; // Wesley Ivan Hurt, Jul 19 2016
(PARI) x='x+O('x^99); concat(0, Vec(x*(1+x+2*x^4)*(1+x+x^2)/((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6)))) \\ Jianing Song, Sep 22 2018
CROSSREFS
Cf. A047329. Different from A000210.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): this sequence
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032
Sequence in context: A299233 A320997 A083042 * A000210 A329829 A182760
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 31 2003
STATUS
approved