login
A082943
Numbers not divisible by any of their digits nor by the sum of their digits.
1
23, 29, 34, 37, 38, 43, 46, 47, 49, 53, 56, 57, 58, 59, 67, 68, 69, 73, 74, 76, 78, 79, 83, 86, 87, 89, 94, 97, 98, 223, 227, 229, 233, 239, 249, 253, 257, 259, 263, 267, 269, 277, 283, 289, 293, 299, 323, 329, 334, 337, 338, 343, 346, 347, 349, 353, 356
OFFSET
1,1
REFERENCES
Amarnath Murthy
LINKS
EXAMPLE
38 is neither divisible by 3 nor 8 nor 11 (i.e. 3+8).
MATHEMATICA
test1[n_] := Module[{dig = IntegerDigits[n]}, Union[Table[IntegerQ[n/dig[[i]]], {i, Length[dig]}]]] == {False}; test2[n_] := Module[{dig = IntegerDigits[n]}, Not[IntegerQ[n/Sum[dig[[i]], {i, Length[dig]}]]]]; Table[If[test1[n] && test2[n], n, 0], {n, 200}] // Union // Rest [From José María Grau Ribas, Feb 17 2010]
ndQ[n_]:=Module[{idn=IntegerDigits[n]}, FreeQ[idn, 0]&&NoneTrue[n/ Join[ idn, {Total[idn]}], IntegerQ]]; Select[Range[2000], ndQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 19 2016 *)
CROSSREFS
Cf. A038772.
Sequence in context: A214754 A344375 A153631 * A061754 A375595 A180066
KEYWORD
nonn,base
AUTHOR
Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 30 2003
EXTENSIONS
More terms from Harvey P. Dale, Oct 19 2016
STATUS
approved