login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082840
a(n) = 4*a(n-1) - a(n-2) + 3, with a(0) = -1, a(1) = 1.
5
-1, 1, 8, 34, 131, 493, 1844, 6886, 25703, 95929, 358016, 1336138, 4986539, 18610021, 69453548, 259204174, 967363151, 3610248433, 13473630584, 50284273906, 187663465043, 700369586269, 2613814880036, 9754889933878, 36405744855479, 135868089488041
OFFSET
0,3
COMMENTS
Apart from the initial -1, these are the numbers k such that the triangular number k*(k + 1)/2 is the sum of three consecutive triangular numbers - see A129803. - Brian Nowell, Nov 03 2009
FORMULA
a(n) = A001571(n) - 1. - N. J. A. Sloane, Nov 03 2009
G.f.: -(1 -6*x +2*x^2)/((1 - x)*(1 - 4*x + x^2)).
a(n) = -3/2 + (1/12)*( (a -2*b +5)*a^n + (b -2*a +5)*b^n ), with a = 2 + sqrt(3), b = 2 - sqrt(3):.
a(n) = -3/2 + (3/4)*A003500(n) - (1/4)*A003500(n-1).
a(n) = (1/2)*(A001834(n) - 3).
E.g.f.: ((1 + sqrt(3))*exp((2 + sqrt(3))*x) + (1 - sqrt(3))*exp((2 - sqrt(3))*x) - 6*exp(x))/4. - Franck Maminirina Ramaharo, Nov 12 2018
MATHEMATICA
CoefficientList[Series[(-1+6x-2x^2)/((1-x)(1-4x+x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 15 2014 *)
LinearRecurrence[{5, -5, 1}, {-1, 1, 8}, 30] (* G. C. Greubel, Feb 25 2019 *)
PROG
(PARI) is(n)=ispolygonal(3/2*n*(n+1)+4, 3) || n==-1 \\ Charles R Greathouse IV, Apr 14 2014
(PARI) my(x='x+O('x^30)); Vec(-(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( -(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
(Sage) (-(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
(GAP) a:=[-1, 1, 8];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
CROSSREFS
Sequence in context: A294844 A302083 A124843 * A224240 A101644 A126395
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003
STATUS
approved