login
A082482
a(n) = floor of (2^n-1)/n.
8
1, 1, 2, 3, 6, 10, 18, 31, 56, 102, 186, 341, 630, 1170, 2184, 4095, 7710, 14563, 27594, 52428, 99864, 190650, 364722, 699050, 1342177, 2581110, 4971026, 9586980, 18512790, 35791394, 69273666, 134217727, 260301048, 505290270, 981706810
OFFSET
1,3
COMMENTS
a(n) is the largest exponent k such that (2^n)^k || (2^n)!. - Lekraj Beedassy, Jan 15 2024
LINKS
FORMULA
a(n) = (2^n - 1 - A082495(n))/n = A162214(n)/n. - Robert Israel, Dec 01 2016
EXAMPLE
a(3) = floor((2^3-1)/3) = floor(7/3) = floor(2.333) = 2.
MAPLE
seq(floor((2^n-1)/n), n=1..100); # Robert Israel, Dec 01 2016
PROG
(PARI) for (n=1, 50, print1(floor((2^n-1)/n)", "))
CROSSREFS
a(n) = A053638(n) - 1.
Sequence in context: A023359 A357455 A357453 * A066000 A011957 A019436
KEYWORD
nonn
AUTHOR
Jon Perry, Apr 27 2003
STATUS
approved