login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082397
Number of directed aggregates of height <= 2 with n cells.
1
1, 2, 5, 11, 26, 62, 153, 385, 988, 2573, 6786, 18084, 48621, 131718, 359193, 985185, 2715972, 7521567, 20915256, 58373586, 163462815, 459136809, 1293223230, 3651864606, 10336625731, 29321683082, 83344398533, 237344961291
OFFSET
1,2
COMMENTS
Conjecture: partial sums of A342912. - Sean A. Irvine, Jul 16 2022
REFERENCES
Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux décalés oscillants. Thèse de Doctorat. 1991. Laboratoire de Recherche en Informatique, Université Paris-Sud XI, France.
LINKS
Rigoberto Flórez and José L. Ramírez, Enumerating symmetric pyramids in Motzkin paths, Ars Math. Contemporanea (2023) Vol. 23, #P4.06.
FORMULA
a(n) = Sum_{k=1..n}(-1)^(k+1)*binomial(n+1, k+1)*binomial(k, floor((k-1)/2)). E.g.f.: -exp(x)*int(-BesselI(1, 2*x)+BesselI(2, 2*x), x)-exp(x)*(-BesselI(1, 2*x)+BesselI(2, 2*x)). - Vladeta Jovovic, Sep 18 2003
Conjecture D-finite with recurrence +(n+2)*a(n) +(-3*n-2)*a(n-1) -n*a(n-2) +3*n*a(n-3)=0. - R. J. Mathar, Jun 27 2022
MAPLE
A082397 := proc(n)
add( (-1)^(k+1)*binomial(n+1, k+1)*binomial(k, floor((k-1)/2)), k=1..n) ;
end proc:
seq(A082397(n), n=1..30) ; # R. J. Mathar, Jun 27 2022
MATHEMATICA
Table[Sum[(-1)^(i+1)*Binomial[k+1, i+1] Binomial[i, Floor[(i-1)/2]], {i, 1, k}], {k, 1, 20}] (* Rigoberto Florez, Dec 10 2022 *)
PROG
(Python)
import math
def Sum(k):
S= sum((-1)**(i+1)*math.comb(k, i+1)*math.comb(i, math.floor((i-1)/2)) for i in range(1, k))
return S
for i in range (2, 20): print(Sum(i))
# Rigoberto Florez, Dec 10 2022
CROSSREFS
Sequence in context: A124217 A095981 A247471 * A051286 A192475 A192400
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Sep 18 2003
STATUS
approved