login
A081898
A sequence related to binomial(n+4, 4).
2
1, 7, 39, 193, 886, 3858, 16146, 65502, 259119, 1003833, 3820689, 14322663, 52986636, 193759452, 701265924, 2514778812, 8943620589, 31569189723, 110673119691, 385569479997, 1335567565746, 4601780568342, 15778086835014
OFFSET
0,2
COMMENTS
Binomial transform of A055589 (without leading 0).
2nd binomial transform of binomial(n+4, 4), A000332.
3rd binomial transform of (1,4,6,4,1,0,0,0,...).
FORMULA
a(n) = 3^n*(n^4 + 42*n^3 + 515*n^2 + 2034*n + 1944)/1944.
G.f.: (1 - 2*x)^4/(1 - 3*x)^5.
E.g.f.: (24 + 96*x + 72*x^2 + 16*x^3 + x^4)*exp(3*x)/24. - G. C. Greubel, Oct 18 2018
MATHEMATICA
LinearRecurrence[{15, -90, 270, -405, 243}, {1, 7, 39, 193, 886}, 50] (* G. C. Greubel, Oct 18 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1-2*x)^4/(1-3*x)^5) \\ G. C. Greubel, Oct 18 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^4/(1-3*x)^5)); // G. C. Greubel, Oct 18 2018
CROSSREFS
Cf. A081899.
Sequence in context: A225617 A032207 A004057 * A034267 A198767 A026752
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 30 2003
STATUS
approved