login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081763
Primes p such that p*(p-1) divides 3^(p-1)-1.
1
2, 5, 17, 41, 101, 257, 401, 641, 881, 1361, 1601, 2441, 3089, 4001, 5441, 5501, 6101, 12101, 13121, 13421, 14081, 14741, 15101, 16001, 18041, 20201, 25301, 25601, 29921, 30881, 32801, 35201, 39041, 39161, 40961, 49409, 53681, 54401, 54449
OFFSET
1,1
COMMENTS
All terms == 2 (mod 3). Also most are congruent to 1 (mod 10). Those that are not: 2, 5, 17, 257, 3089, 49409, 54449, 65537, 83969, 149057, .... - Robert G. Wilson v, Dec 02 2013
Number of terms < 10^k: 2, 4, 9, 17, 49, 105, 244, 574, 1388, .... - Robert G. Wilson v, Dec 02 2013
LINKS
MATHEMATICA
Select[ Prime@ Range@ 6000, PowerMod[3, # - 1, # (# - 1)] == 1 &] (* Robert G. Wilson v, Dec 02 2013 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (! ((3^(p-1)-1) % (p*(p-1))), print1(p, ", "))) \\ Michel Marcus, Dec 02 2013
(PARI) is(n)=isprime(n) && Mod(3, n^2-n)^(n-1)==1 \\ Charles R Greathouse IV, Dec 02 2013
CROSSREFS
Sequence in context: A323427 A080898 A346134 * A013918 A007351 A300692
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 09 2003
EXTENSIONS
Missing term 2 added to sequence by Robert G. Wilson v, Dec 02 2013
STATUS
approved