login
A081557
Binomial transform of expansion of exp(cosh(x)), A005046.
3
1, 1, 2, 4, 11, 31, 107, 379, 1556, 6556, 31007, 150349, 801341, 4373461, 25853102, 156297964, 1012382291, 6698486371, 47089993967, 337789490599, 2557480572656, 19738202807236, 159928950077327, 1319703681935929, 11382338060040761, 99896787342523081
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(x) * exp(cosh(x)) / e = exp(cosh(x)+x-1).
MAPLE
seq(coeff(series(exp(cosh(x)+x-1), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
MATHEMATICA
With[{nn = 30}, CoefficientList[Series[Exp[Cosh[x] + x - 1], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(cosh(x)+x-1) )) \\ G. C. Greubel, Aug 13 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Cosh(x)+x-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019
(Sage) [factorial(n)*( exp(cosh(x)+x-1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019
CROSSREFS
Cf. A081558.
Sequence in context: A275426 A115625 A056323 * A154603 A063254 A280766
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 22 2003
STATUS
approved