login
A081340
(5^n+(-1)^n)/2.
5
1, 2, 13, 62, 313, 1562, 7813, 39062, 195313, 976562, 4882813, 24414062, 122070313, 610351562, 3051757813, 15258789062, 76293945313, 381469726562, 1907348632813, 9536743164062, 47683715820313, 238418579101562
OFFSET
0,2
COMMENTS
Binomial transform of A003665. 2nd binomial transform of (1,0,9,0,81,0,729,0,..). Case k=2 of family of recurrences a(n)=2k*a(n-1)-(k^2-9)*a(n-2), a(0)=0, a(1)=k. A003665 is case k=1.
FORMULA
a(n) = 4*a(n-1) + 5*a(n-2), a(0)=1, a(1)=2.
G.f.: (1-2*x)/((1+x)*(1-5*x)).
E.g.f.: exp(2*x) * cosh(3*x).
a(n) = ((2+sqrt(9))^n+(2-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = sum( k=0..n, A201730(n,k)*8^k ). - Philippe Deléham, Dec 06 2011
MATHEMATICA
CoefficientList[Series[(1 - 2 x) / ((1 + x) (1 - 5 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 08 2013 *)
PROG
(Sage) [lucas_number2(n, 4, -5)/2 for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
(PARI) a(n)=(5^n+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A294052 A353177 A089130 * A211067 A296435 A127531
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 18 2003
STATUS
approved