login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081097
Numbers n such that n^2= (1/5)*(n+floor(sqrt(5)*n*floor(sqrt(5)*n))).
0
1, 6, 23, 40, 273, 1870, 7343, 12816, 87841, 602070, 2364359, 4126648, 28284465, 193864606, 761316191, 1328767776, 9107509825, 62423800998, 245141449079, 427859097160, 2932589879121, 20100270056686, 78934785287183
OFFSET
1,2
COMMENTS
Conjecture: if m is an integer and sqrt(m) is irrational, the sequence of n such that n^2 = (1/m)*(n + floor(sqrt(m)*n*floor(sqrt(m)*n))) always satisfies a recurrence of order m. For example: if m=6, the sequence n=b(k) satisfies: b(6k)=4*b(6k-1)+4*b(6k-2)-b(6k-3)-1; b(6k+1)=.... etc.
FORMULA
a(1)=1; a(2)=6; a(3)=23; a(4)=40; a(4n)=2*a(4n-1)-a(4n-2); a(4n+1)=7*a(4n)-a(4n-2)-1; a(4n+2)=7*a(4n+1)-a(4n-1)-1; a(4n+3)=4*a(4n+2)-a(4n+1)/2-1/2.
Empirical g.f.: x*(x^7+x^6+13*x^5+89*x^4-17*x^3-17*x^2-5*x-1) / ((x-1)*(x^2-4*x-1)*(x^2+4*x-1)*(x^4+18*x^2+1)). - Colin Barker, Jun 24 2013
PROG
(PARI) x=1; y=6; z=23; u=40; for(n=5, 50, v=if((n%4-1)*(n%4-2), if(n%4, 4*u-z/2-1/2, 2*u-z), if(n%4-1, 7*u-z-1, 7*u-y-1)); x=y; y=z; z=u; u=v; print1(v, ", "))
CROSSREFS
Cf. A046090.
Sequence in context: A229486 A227792 A161446 * A031293 A250647 A304392
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 15 2003
STATUS
approved