login
A080736
Multiplicative function defined by a(1)=1, a(2)=0, a(2^r) = phi(2^r) (r>1), a(p^r) = phi(p^r) (p odd prime, r>=1), where phi is Euler's function A000010.
3
1, 0, 2, 2, 4, 0, 6, 4, 6, 0, 10, 4, 12, 0, 8, 8, 16, 0, 18, 8, 12, 0, 22, 8, 20, 0, 18, 12, 28, 0, 30, 16, 20, 0, 24, 12, 36, 0, 24, 16, 40, 0, 42, 20, 24, 0, 46, 16, 42, 0, 32, 24, 52, 0, 40, 24, 36, 0, 58, 16, 60, 0, 36, 32, 48, 0, 66, 32, 44, 0, 70, 24, 72, 0, 40, 36, 60, 0, 78, 32
OFFSET
1,3
LINKS
FORMULA
a(A016825(n)) = 0; a(A000040(n)) = A000040(n) - 1. - Reinhard Zumkeller, Jun 11 2012
a(n) = if n mod 4 = 2 then 0 else A000010(n). - Reinhard Zumkeller, Jun 13 2012
From Amiram Eldar, Nov 02 2023: (Start)
Multiplicative with a(2) = 0, a(2^e) = 2^(e-1) for e >= 2, and a(p^e) = (p-1)*p^(e-1) for an odd prime p.
Dirichlet g.f.: (1 - 2^(1-s) + 1/(2^s-1)) * zeta(s-1) / zeta(s).
Sum_{k=1..n} a(k) ~ (5/(2*Pi^2)) * n^2. (End)
MATHEMATICA
a[n_] := If[Mod[n, 4] == 2, 0, EulerPhi[n]]; Array[a, 100] (* Amiram Eldar, Nov 02 2023 *)
PROG
(PARI) {for(n=1, 81, f=factor(n); print1(if(n==1, 1, if(f[1, 1]==2&&f[1, 2]==1, 0, prod(j=1, matsize(f)[1], eulerphi(f[j, 1]^f[j, 2])))), ", "))}
(Haskell)
a080736 n = if n `mod` 4 == 2 then 0 else a000010 n
-- Reinhard Zumkeller, Jun 13 2012, Jun 11 2012
CROSSREFS
Cf. A080737.
Sequence in context: A030207 A366561 A061006 * A326127 A276151 A144412
KEYWORD
nonn,easy,mult
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms and PARI code from Klaus Brockhaus, Mar 10 2003
STATUS
approved