login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080675
a(n) = (5*4^n - 8)/6.
7
2, 12, 52, 212, 852, 3412, 13652, 54612, 218452, 873812, 3495252, 13981012, 55924052, 223696212, 894784852, 3579139412, 14316557652, 57266230612, 229064922452, 916259689812, 3665038759252, 14660155037012, 58640620148052, 234562480592212, 938249922368852
OFFSET
1,1
COMMENTS
These numbers have a simple binary pattern: 10,1100,110100,11010100,1101010100, ... i.e., the n-th term has a binary expansion 1(10){n-1}0, that is, there are n-1 10's between the most significant 1 and the least significant 0.
LINKS
Andrei Asinowski, Cyril Banderier, Benjamin Hackl, On extremal cases of pop-stack sorting, Permutation Patterns (Zürich, Switzerland, 2019).
FORMULA
a(1)=2, a(2)=12, a(n)=5*a(n-1)-4*a(n-2). - Harvey P. Dale, Oct 16 2012
MATHEMATICA
(5*4^Range[30]-8)/6 (* or *) LinearRecurrence[{5, -4}, {2, 12}, 30] (* Harvey P. Dale, Oct 16 2012 *)
PROG
(Magma) [(5*4^n-8)/6: n in [1..40] ]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=(5*4^n-8)/6 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
a(n) = A072197(n-1) - 1 = A014486(|A106191(n)|). a(n) = A079946(A020988(n-2)) for n>=2. Cf. also A122229.
Sequence in context: A179259 A261474 A350653 * A218782 A007225 A375634
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 02 2003
EXTENSIONS
Further comments added by Antti Karttunen, Sep 14 2006
STATUS
approved