OFFSET
0,2
COMMENTS
a(n) is the determinant of the n X n matrix M with m(i,i)=2i+1, m(i,j)=i+j.
LINKS
Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
FORMULA
G.f.: (1 - 2x + x^2 - 3x^3 + x^4)/(1 - x)^5.
a(0)=1, a(1)=3, a(2)=6, a(3)=7, a(4)=1, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Sep 20 2014
MATHEMATICA
Table[1+(n(n+1)(n+3)(4-n))/12, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 6, 7, 1}, 50] (* Harvey P. Dale, Sep 20 2014 *)
PROG
(PARI) a(n) = 1+(1/12)*(n*(n+1)*(n+3)*(4-n)) \\ Michel Marcus, Jul 16 2013
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Feb 11 2003
EXTENSIONS
Definition corrected by Michel Marcus, Jul 16 2013
STATUS
approved