login
A079968
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={3}.
1
1, 1, 2, 4, 7, 14, 27, 51, 98, 187, 357, 683, 1305, 2494, 4767, 9110, 17411, 33276, 63596, 121544, 232293, 443954, 848478, 1621597, 3099169, 5923081, 11320094, 21634776, 41348026, 79023662, 151028714, 288643577, 551650823, 1054305916
OFFSET
0,3
COMMENTS
Number of compositions (ordered partitions) of n into elements of the set {1,2,3,5,6}.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
FORMULA
a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-5)+a(n-6).
G.f.: -1/(x^6+x^5+x^3+x^2+x-1).
MATHEMATICA
LinearRecurrence[{1, 1, 1, 0, 1, 1}, {1, 1, 2, 4, 7, 14}, 40] (* Harvey P. Dale, Jun 05 2013 *)
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 19 2003
STATUS
approved