login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079563
a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=7.
2
1, 14, 231, 3934, 67851, 1177974, 20531770, 358788696, 6281076123, 110103674128, 1931983053056, 33926800240578, 596145343139514, 10480467311987778, 184327560283768776, 3243034966775972144, 57074433199551436347
OFFSET
0,2
COMMENTS
More generally, for m>=2, a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n * (1 + (2*m-4)/(3*sqrt(Pi*n*m*(m-1)/2))), extended by Vaclav Kotesovec, May 25 2020
See A000302, A006256, A078995 for cases m=2,3 and 4.
LINKS
Rui Duarte and António Guedes de Oliveira, Short note on the convolution of binomial coefficients, arXiv:1302.2100 [math.CO], 2013.
D. Merlini, R. Sprugnoli, and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
FORMULA
a(n) = (7/12)*(823543/46656)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.41...
c = 10/(3*sqrt(21*Pi)) = 0.410387535383... - Vaclav Kotesovec, May 25 2020
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} binomial(7*k+x,k)*binomial(7*(n-k)-x,n-k) for any real x.
a(n) = Sum_{k=0..n} 6^(n-k)*binomial(7*n+1,k).
a(n) = Sum_{k=0..n} 7^(n-k)*binomial(6*n+k,k). (End)
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 26 2003
STATUS
approved