login
A079429
a(0) = 2, a(1) = 3, a(2) = 5; a(n) = a(n-1) + [a(n-1)-a(n-2)] * [a(n-2)-a(n-3)].
1
2, 3, 5, 7, 11, 19, 51, 307, 8499, 2105651, 17181974835, 36028814200938803, 618970019678718951650500915, 22300745198530623760505737951367313156481331, 13803492693581127574869511746854796103432841704846511061692361604079923
OFFSET
0,1
LINKS
FORMULA
Conjecture: a(n)=A011455(n-1)+5 where defined. - R. J. Mathar, Apr 26 2007
Proof of conjecture: if d(n) = log_2(a(n+1)-a(n)), we have d(0)=0, d(1)=1, d(n)=d(n-1)+d(n-2), so d(n) = Fibonacci(n). - Robert Israel, Oct 25 2017
EXAMPLE
a(3) = 7, since a(3) = a(2) + [(a(2)-a(1)) * (a(1)-a(0))] = 5 + ((5-3)*(3-2))
MAPLE
f:= proc(n) option remember; procname(n-1)+(procname(n-1)-procname(n-2))*(procname(n-2)-procname(n-3)) end proc:
f(0):= 2: f(1):= 3: f(2):= 5:
map(f, [$0..20]); # Robert Israel, Oct 25 2017
MATHEMATICA
a[0] = 2; a[1] = 3; a[2] = 5; a[n_] := a[n] = a[n - 1] + (a[n - 1] - a[n - 2])*(a[n - 2] - a[n - 3]); Table[a[n], {n, 0, 14}]
PROG
(Magma) I:=[2, 3, 5]; [n le 3 select I[n] else Self(n-1)+(Self(n-1)-Self(n-2))*(Self(n-2)-Self(n-3)): n in [1..15]]; // Vincenzo Librandi, Oct 25 2017
CROSSREFS
Cf. A011455.
Sequence in context: A084736 A089472 A373045 * A262378 A072299 A334199
KEYWORD
nonn
AUTHOR
Ajay Chhabra (ajay(AT)cantab.net), Jan 08 2003
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Jan 08 2002
Conjecture corrected by Robert Israel, Oct 25 2017
STATUS
approved