login
A079295
(D(p)-6)/(12p) where D(p) denotes the denominator of the 2p-th Bernoulli number and p runs through the primes.
0
1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,1
COMMENTS
If p is a Sophie Germain prime (A005384) then denominator(B(2p))= 6*(2p+1).
FORMULA
a(A053176(n))=0; a(A005384(n))=1.
a(n) = pi(2*prime(n) + 1) - pi(2*prime(n)), where pi(n) = A000720(n) and prime(n) = A000040(n). - Ridouane Oudra, Sep 02 2019
MATHEMATICA
dbn[n_]:=Module[{d=Denominator[BernoulliB[2n]]}, (d-6)/(12n)]; dbn/@ Prime[ Range[100]] (* Harvey P. Dale, May 19 2012 *)
PROG
(PARI) a(n) = my(p=prime(n)); (denominator(bernfrac(2*p)) - 6)/(12*p); \\ Michel Marcus, Sep 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 09 2003
STATUS
approved