login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079022
Suppose p and q = p + 2*n are primes. Define the difference pattern of (p, q) to be the successive differences of the primes in the range p to q. There are a(n) possible difference patterns.
1
1, 2, 3, 5, 5, 14, 15, 17, 49, 56, 51, 175, 150, 148, 666, 581, 561, 1922, 1449
OFFSET
1,2
EXAMPLE
n=4, d=8: there are five difference patterns: [8], [6,2], [2,6], [2,4,2], [2,2,4]. The last pattern is singular with prime 4-tuple {p=3,5,7,11=q}.
MATHEMATICA
t[x_] := Table[Length[FactorInteger[x+j]], {j, 0, d}]; p[x_] := Flatten[Position[Table[PrimeQ[x+2*j], {j, 0, d/2}], True]]; dp[x_] := Delete[RotateLeft[p[x]]-p[x], -1]; k=0; d=12; {n1=2, n2=2000, h0=PrimePi[n1], h=PrimePi[n2]}; t1={}; Do[s=Prime[n]; If[PrimeQ[s + d], k=k+1; Print[{k, s, pt=2*dp[s]}]; t1=Union[t1, {2*dp[s]}], 1], {n, h0, h}]; {d, n1, n2, Length[t1], t1} (* program for d=12; partition list is enlargable if t1={} is replaced with already obtained set *)
CROSSREFS
See A079016, A079017, A079018, A079019, A079020, A079021 for cases n=6 through 11.
Sequence in context: A079125 A146305 A342437 * A368706 A368674 A095296
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Jan 24 2003
EXTENSIONS
a(14)-a(17) and a(19) from David A. Corneth, Aug 30 2019
a(18) from Jinyuan Wang, Feb 16 2021
STATUS
approved