login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078996
Triangle read by rows: let f(x) = x/(1-x-x^2); n-th row gives coefficients of denominator polynomial of n-th derivative f(x)^(n), with highest powers first, for n >= 0.
0
-1, -1, 1, 1, 2, -1, -2, 1, 1, 3, 0, -5, 0, 3, -1, 1, 4, 2, -8, -5, 8, 2, -4, 1, 1, 5, 5, -10, -15, 11, 15, -10, -5, 5, -1, 1, 6, 9, -10, -30, 6, 41, -6, -30, 10, 9, -6, 1, 1, 7, 14, -7, -49, -14, 77, 29, -77, -14, 49, -7, -14, 7, -1, 1, 8, 20, 0, -70, -56, 112, 120, -125, -120, 112, 56, -70, 0, 20, -8, 1
OFFSET
0,5
FORMULA
f(x)^(n), for n=0, 1, 2, 3, 4, ..., where f(x)= x/(1-x-x^2).
G.f.: G(0)/(2*x) - 1/x - 2 - 2*x + 2*x^2 , where G(k)= 1 + 1/( 1 - (1+x-x^2)*x^(2*k+1)/((1+x-x^2)*x^(2*k+1) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013
EXAMPLE
Triangle begins:
-1, -1, 1;
1, 2, -1, -2, 1;
1, 3, 0, -5, 0, 3, -1;
...
CROSSREFS
See A084610 for another version of this triangle.
Sequence in context: A090001 A269329 A117166 * A084610 A303336 A361462
KEYWORD
sign,tabf
AUTHOR
Mohammad K. Azarian, Jan 12 2003
EXTENSIONS
Edited by N. J. A. Sloane, Jan 15 2011
STATUS
approved