Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 May 09 2020 15:24:34
%S 1,8,72,664,6184,57888,543544,5113872,48180456,454396000,4288773152,
%T 40503496536,382701222296,3617396099936,34203591636048,
%U 323492394385824,3060238763412072,28955508198895584,274018698082833760,2593539713410178528,24550565251665845664
%N a(n) = Sum_{k=0..n} C(4*k,k)*C(4*(n-k),n-k).
%H Vincenzo Librandi, <a href="/A078995/b078995.txt">Table of n, a(n) for n = 0..200</a>
%H D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344 (Y_n for s=4).
%H Rui Duarte and António Guedes de Oliveira, <a href="http://arxiv.org/abs/1302.2100">Short note on the convolution of binomial coefficients</a>, arXiv:1302.2100 [math.CO], 2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Duarte/duarte3.html">J. Int. Seq. 16 (2013) #13.7.6</a>.
%F a(n) = 2/3*(256/27)^n*(1+c/sqrt(n)+o(n^-1/2)) where c = 2/3*sqrt(2/(3*Pi)) = 0.307105910641187... More generally, a(n, m)=sum(k=0, n, binomial(m*k, k)*binomial(m*(n-k), n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256 for cases m=2 and 3. - _Benoit Cloitre_, Jan 26 2003, corrected and extended by _Vaclav Kotesovec_, Nov 06 2012
%F 243*n*(8*n - 17)*(3*n - 1)*(3*n - 4)*(3*n - 2)*(3*n - 5)*a(n) = 72*(3*n - 5)*(3*n - 4)*(6912*n^4 - 33120*n^3 + 58256*n^2 - 47798*n + 15309)*a(n - 1) - 3072*(2*n - 3)*(6912*n^5 - 55008*n^4 + 175696*n^3 - 282180*n^2 + 227825*n - 73710)*a(n - 2) + 262144*(n - 2)*(4*n - 7)*(2*n - 3)*(2*n - 5)*(4*n - 9)*(8*n - 9)*a(n - 3). - _Vladeta Jovovic_, Jul 16 2004
%F Shorter recurrence: 81*n*(3*n-2)*(3*n-1)*(8*n-11)*a(n) = 24*(4608*n^4-14400*n^3+15776*n^2-7346*n+1215)*a(n-1) - 2048*(2*n-3)*(4*n-5)*(4*n-3)*(8*n-3)*a(n-2). - _Vaclav Kotesovec_, Nov 06 2012
%F a(n) = sum(k=0,n,binomial(4*k+l,k)*binomial(4*(n-k)-l,n-k)) for every real number l. - _Rui Duarte_ and António Guedes de Oliveira, Feb 16 2013
%F a(n) = sum(k=0,n,3^(n-k)*binomial(4n+1,k)). - _Rui Duarte_ and António Guedes de Oliveira, Feb 17 2013
%F a(n) =sum(k=0,n,4^(n-k)*binomial(3n+k,k)). - _Rui Duarte_ and António Guedes de Oliveira, Feb 17 2013
%F G.f.: g^2/(3*g-4)^2 where g=ogf(A002293) satisfies g = 1+x*g^4. - _Mark van Hoeij_, May 06 2013
%p series(eval(g/(3*g-4), g=RootOf(g = 1+x*g^4,g))^2, x=0, 30); # _Mark van Hoeij_, May 06 2013
%t Table[Sum[Binomial[4*k, k]*Binomial[4*(n - k), n - k], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 06 2012 *)
%o (PARI) a(n) = sum(k=0, n, binomial(4*k, k)*binomial(4*(n-k), n-k)); \\ _Michel Marcus_, May 09 2020
%Y See A049235 for more information.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Jan 19 2003