login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078989
Chebyshev sequence with Diophantine property.
8
1, 67, 4421, 291719, 19249033, 1270144459, 83810285261, 5530208682767, 364909962777361, 24078527334623059, 1588817894122344533, 104837902484740116119, 6917712746098725319321, 456464203340031130959067, 30119719707695955917979101, 1987445036504593059455661599
OFFSET
0,2
COMMENTS
One fourth of bisection (even part) of A041024.
(4*a(n))^2 - 17*A078988(n)^2= -1 (Pell -1 equation, see A077232-3).
FORMULA
G.f.: (1 + x)/(1 - 66*x + x^2).
a(n) = 66*a(n-1) - a(n-2) for n>=1, a(-1)=-1, a(0)=1.
a(n) = S(2*n, 2*sqrt(17)) = -i*((-1)^n)*T(2*n+1, 4*i)/4 = S(n, 66) + S(n-1, 66) with i^2=-1 and S(n, x), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = A041024(2*n)/4.
a(n) = (1/4)*sinh((2*n + 1)*arcsinh(4)). - Bruno Berselli, Apr 03 2018
EXAMPLE
(x,y) = (4,1), (268,65), (17684,4289), ... give the positive integer solutions to x^2 - 17*y^2 =-1.
MATHEMATICA
LinearRecurrence[{66, -1}, {1, 67}, 20] (* Bruno Berselli, Apr 03 2018 *)
PROG
(PARI) x='x+O('x^99); Vec((1+x)/(1-66*x+x^2)) \\ Altug Alkan, Apr 05 2018
(GAP) a:=[1, 67];; for n in [3..20] do a[n]:=66*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Apr 05 2018
CROSSREFS
Cf. A097316 for S(n, 66).
Cf. A041024.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.
Sequence in context: A120663 A261974 A328353 * A156121 A280004 A211961
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 10 2003
STATUS
approved