login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078910
Let r+i*s be the sum of the distinct first-quadrant Gaussian integers dividing n; sequence gives r values.
6
1, 4, 4, 10, 9, 16, 8, 22, 13, 37, 12, 40, 19, 32, 36, 46, 23, 52, 20, 93, 32, 48, 24, 88, 56, 77, 40, 80, 37, 148, 32, 94, 48, 95, 72, 130, 45, 80, 76, 205, 51, 128, 44, 120, 117, 96, 48, 184, 57, 231, 92, 193, 63, 160, 108, 176, 80, 151, 60, 372, 73, 128, 104, 190, 176
OFFSET
1,2
COMMENTS
A Gaussian integer z = x+iy is in the first quadrant if x > 0, y >= 0. Just one of the 4 associates z, -z, i*z, -i*z is in the first quadrant.
FORMULA
a(n) = A078911(n)+A000203(n). - Vladeta Jovovic, Jan 11 2003
EXAMPLE
The distinct first-quadrant divisors of 4 are 1, 1+i, 2, 2+2*i, 4, with sum 10+3*i, so a(4) = 10.
MATHEMATICA
Table[Re[Plus@@Divisors[n, GaussianIntegers -> True]], {n, 65}] (* Alonso del Arte, Jan 24 2012 *)
PROG
(PARI) A078910(n, S=[])=sigma(n)+sumdiv(n*I, d, if(real(d)&imag(d)&!setsearch(S, d=vecsort(abs([real(d), imag(d)]))), S=setunion(S, [d]); (d[1]+d[2])>>(d[1]==d[2]))) \\ M. F. Hasler, Nov 22 2007
CROSSREFS
Cf. A062327 for the number of first quadrant divisors of n.
Sequence in context: A369225 A050348 A134637 * A196051 A140234 A220044
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 11 2003
EXTENSIONS
More terms from Vladeta Jovovic, Jan 11 2003
STATUS
approved