OFFSET
0,4
COMMENTS
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
For n>=2, the triple (n^6, 120*a(n), (n^8 + n^4)/2) form a Pythagorean triple whose short leg is a square and the other sides are triangular numbers. - Michel Marcus, Mar 15 2021
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, #14).
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: -x^2*(x+1)*(x^4+17*x^3+48*x^2+17*x+1) / (x-1)^9. - Colin Barker, Jun 18 2013
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=2} 1/a(n) = 450 - 8*Pi^4/3 - 60*Pi*coth(Pi).
Sum_{n>=2} (-1)^n/a(n) = 7*Pi^4/3 - 60*Pi*cosech(Pi) - 210. (End)
MATHEMATICA
Table[n^4*(n^4 - 1)/240, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jan 11 2003
STATUS
approved