login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078876
a(n) = n^4*(n^4-1)/240.
1
0, 0, 1, 27, 272, 1625, 6993, 24010, 69888, 179334, 416625, 893101, 1791504, 3398759, 6148961, 10678500, 17895424, 29065308, 45916065, 70764303, 106666000, 157594437, 228648497, 326294606, 458645760, 635781250, 870110865, 1176787521, 1574172432, 2084357107
OFFSET
0,4
COMMENTS
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
For n>=2, the triple (n^6, 120*a(n), (n^8 + n^4)/2) form a Pythagorean triple whose short leg is a square and the other sides are triangular numbers. - Michel Marcus, Mar 15 2021
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, #14).
FORMULA
G.f.: -x^2*(x+1)*(x^4+17*x^3+48*x^2+17*x+1) / (x-1)^9. - Colin Barker, Jun 18 2013
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=2} 1/a(n) = 450 - 8*Pi^4/3 - 60*Pi*coth(Pi).
Sum_{n>=2} (-1)^n/a(n) = 7*Pi^4/3 - 60*Pi*cosech(Pi) - 210. (End)
MATHEMATICA
Table[n^4*(n^4 - 1)/240, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *)
CROSSREFS
Cf. A002415.
Cf. A001014 (n^6), A071231 ((n^8 + n^4)/2).
Sequence in context: A181323 A136926 A042412 * A059603 A224117 A251080
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jan 11 2003
STATUS
approved