login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078389
Number of different values obtained by evaluating all different parenthesizations of 1/2/3/4/.../n.
2
1, 1, 2, 4, 8, 16, 32, 60, 116, 192, 384, 544, 1088, 1736, 2576, 3824, 7648, 10352, 20704, 28096, 40256, 62128, 124256, 155488, 227872, 349248, 470352, 622128, 1244256, 1499232, 2998464, 3796224, 5289920, 8048544, 10668096, 12562752, 25125504
OFFSET
1,3
COMMENTS
a(n) = 2*a(n-1) if n is an odd prime, because (p/q)/n and p/(q/n)=(p/q)*n give exactly two different values for each of the different values p/q from the parenthesizations of 1/.../n-1 and a(n) <= 2*a(n-1) if n is not a prime. - Alois P. Heinz, Nov 23 2008
Let M(n) be the smallest integer among the a(n) values. It seems that, for n >= 4, M(n) = A055204, the squarefree part of n!. - Giovanni Resta, Dec 16 2012
EXAMPLE
For n=4, ((1/2)/3)/4 = 1/24, (1/2)/(3/4) = 2/3, (1/(2/3))/4 = 3/8, 1/((2/3)/4) = 6 and 1/(2/(3/4)) = 3/8, giving 4 different values 1/24, 3/8, 2/3 and 6. Thus a(4) = 4.
a(5) = 2*a(4) = 2*4 = 8, because 5 is a prime; the 8 different values are: 1/120, 3/40, 2/15, 5/24, 6/5, 15/8, 10/3, 30. - Alois P. Heinz, Nov 23 2008
MAPLE
p:= proc(n) option remember; local x;
if n<1 then {}
elif n=1 then {1}
elif n=2 then {1/2}
else {seq([x/n, x*n][], x=p(n-1))}
fi
end:
a:= n-> nops(p(n)):
seq(a(n), n=1..20); # Alois P. Heinz, Nov 23 2008
MATHEMATICA
p[0] = {}; p[1] = {1}; p[2] = {1/2}; p[n_] := p[n] = Union[ Flatten[ Table[ {x/n, x*n}, {x, p[n - 1]}]]]; a[n_] := Length[p[n]]; A078389 = Table[an = a[n]; Print[an]; an, {n, 1, 30}] (* Jean-François Alcover, Jan 06 2012, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A007813 A289657 A005309 * A248847 A059173 A355520
KEYWORD
nonn,nice
AUTHOR
John W. Layman, May 07 2003
EXTENSIONS
Corrected a(5)-a(10) and extended a(11)-a(31) by Alois P. Heinz, Nov 23 2008
a(32)-a(37) from Alois P. Heinz, Mar 07 2011
STATUS
approved