login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078114
Pinomial primes of order 4: primes of the form 3*x^4 + 1*x^3 + 4*x^2 + 1*x + 5, x a positive integer.
3
79, 4259, 322079, 1391239, 9416279, 57229199, 180621149, 583332179, 666475879, 758206139, 1090726199, 1366313119, 1780616609, 3017394239, 3297759379, 3754381249, 8119069289, 9639336299, 12901941509, 16441316629, 17940244339
OFFSET
1,1
COMMENTS
Note that only primes that end in 9 occur in the sequence of order 4. This is easy to prove by considering the ending digit combinations. actually, order 4 with odd x produces an even number so only even numbers need be considered.
For order 5, x<= 10, y = 3*x^5 + x^4 + 4*x^3 + x^2 + 5*x + 9. Sequence is 23 167 10559 54287 104561 314159 ...
Allowing any integral value for x, the sequence would read: 5, 59, 79, 769, 4259, 113279, 310379, 322079, 694039, 983789, 1391239, 1825129, 9416279,... (M. F. Hasler)
One could also reverse the order of polynomial coefficients, i.e. list primes p = 3 + 1*x + 4*x^2 + 1*x^3 + 5*x^4. For a base independent approach, one could take coefficients from the continued fraction expansion of Pi. - M. F. Hasler, Jun 17 2007
LINKS
FORMULA
Only even x can give a prime.
MATHEMATICA
Select[Table[3*n^4+n^3+4*n^2+n+5, {n, 1, 300}], PrimeQ] (* Vincenzo Librandi, Jul 15 2012 *)
PROG
(PARI) /* This program is hard-wired for order 4. Change the polynomial y for more terms. */ pinomial(n) = { ct=0; sr=0; for(x=1, n, /* odd x => even y */ y = 3*x^4 + x^3 + 4*x^2 + x + 5; /* y = 3*x^5 + x^4 + 4*x^3 + x^2 + 5*x + 9; /* order 5*/ if(isprime(y), ct+=1; print1(y" "); ); ) }
(PARI) polyprimes( N=25 /*# of terms*/, P=[3, 1, 4, 1, 5], X=1/*starting value*/, a=[] )={ local(t); P=Pol(P); while( #a<N, if( isprime( t=subst( P, x, X )) & !setsearch(Set(a), t), /*print([X, t]); */ a=concat(a, t)); X++/*or: X=(X<=0)-X to get all integers*/); vecsort(a) } /* then polyprimes() gives the first 25 terms; polyprimes(50, [null], 0) gives 50 terms including the term 5=P(x=0), etc. */ \\ M. F. Hasler, Jun 17 2007
(Magma) [a: n in [1..300] | IsPrime(a) where a is 3*n^4+n^3+ 4*n^2+ n+5]; // Vincenzo Librandi, Jul 15 2012
CROSSREFS
Sequence in context: A017795 A017742 A298464 * A038531 A032910 A116235
KEYWORD
easy,nonn,base,less
AUTHOR
Cino Hilliard, Dec 04 2002
EXTENSIONS
Edited by M. F. Hasler, Jun 17 2007
STATUS
approved