login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares and their roots having square decimal digits.
2

%I #12 Aug 26 2024 13:45:06

%S 0,1,100,10000,1000000,1100401,100000000,110040100,10000000000,

%T 10100049001,11004010000,1000000000000,1010004900100,1100401000000,

%U 100000000000000,100100004990001,101000490010000,110040100000000

%N Squares and their roots having square decimal digits.

%C If k is a term, then so is 100 * k. - _Robert Israel_, Aug 26 2024

%H Robert Israel, <a href="/A077440/b077440.txt">Table of n, a(n) for n = 1..388</a>

%e a(6) = 1100401 = 1049^2.

%e A019544(8)=441 is not a term, as 441=21^2 and 2 is not a square digit.

%p N:= 30: # for terms of up to 2*N digits

%p R:= {1}: T:= {1,9}:

%p for d from 2 to N do

%p T:= select(t -> convert(convert(t^2 mod 10^d, base,10),set) subset {0,1,4,9}, map(t -> (t, t + 10^(d-1), t + 4*10^(d-1), t + 9*10^(d-1)), T));

%p R:= R union select(t -> convert(convert(t^2,base,10),set) subset {0,1,4,9},T);

%p od:

%p R2:= map(t -> t^2, R):

%p Res:= map(t -> seq(t*10^(2*i), i=0..(2*N-ilog10(t)-1)/2), R2) union {0}:

%p sort(convert(Res,list)); # _Robert Israel_, Aug 26 2024

%t a = {}; Do[d = FromDigits[ ReplaceAll[ IntegerDigits[n, 4], {3 -> 9, 2 -> 4}]]; If[ Union[ Join[ IntegerDigits[d^2], {0, 1, 4, 9}]] == {0, 1, 4, 9}, a = Append[a, d^2]], {n, 0, 3*10^4}]; a

%Y a(n) = A077439(n)^2.

%Y Cf. A019544, A000290, A046030.

%K nonn,base

%O 1,3

%A _Reinhard Zumkeller_, Nov 06 2002

%E Edited by _Robert G. Wilson v_, Nov 08 2002