login
Smallest multiple of n using all the digits of all its divisors (a permutation of the concatenation of its divisors), or 0 if no such number exists.
4

%I #18 Oct 19 2017 03:14:08

%S 1,12,0,124,15,1236,0,1248,0,11250,0,0,0,21714,11355,112864,0,0,0,

%T 10122540,0,0,0,1122234648,1525,112632,0,11242784,0,10112335560,0,

%U 11223648,0,131274,13755,0,0,123918,0,10012245480,0,11122234746,0

%N Smallest multiple of n using all the digits of all its divisors (a permutation of the concatenation of its divisors), or 0 if no such number exists.

%C For a list of all values of n up to 10000 where a(n)=0, see A179197. - _Jon E. Schoenfield_, Jul 10 2010

%H Jon E. Schoenfield, <a href="/A077351/b077351.txt">Table of n, a(n) for n = 1..10000</a>

%p A077351 := proc(n) local ndvs,ds,d,m,muldivs ; ndvs := [] ; ds := numtheory[divisors](n) ; for d from 1 to nops(ds) do ndvs := [op(ndvs), op(convert(op(d,ds),base,10))]; od ; ndvs := sort(ndvs) ; m := floor( 10^(nops(ndvs)-1)/n) ; while m*n < op(-1,ndvs)*10^(nops(ndvs)-1) do muldivs := sort(convert(m*n,base,10)) ; if muldivs = ndvs then RETURN(m*n) ; fi ; m := m+1 ; od ; RETURN(0) ; end: for n from 1 to 25 do print(n,A077351(n)) ; od ; # _R. J. Mathar_, Mar 20 2007

%Y Cf. A077352, A179197.

%K base,nonn

%O 1,2

%A _Amarnath Murthy_, Nov 05 2002

%E Corrected and extended by _R. J. Mathar_, Mar 20 2007

%E a(24) from _Don Reble_, Nov 07 2007; a(25)-a(29) from _R. J. Mathar_, Mar 20 2007

%E More terms from _Jon E. Schoenfield_, Jul 02 2010