login
A077250
Bisection (odd part) of Chebyshev sequence with Diophantine property.
6
11, 103, 1019, 10087, 99851, 988423, 9784379, 96855367, 958769291, 9490837543, 93949606139, 930005223847, 9206102632331, 91131021099463, 902104108362299, 8929910062523527, 88396996516872971, 875040055106206183, 8662003554545188859, 85744995490345682407
OFFSET
0,1
COMMENTS
a(n)^2 - 24*b(n)^2 = 25, with the companion sequence b(n) = A077249(n).
The even part is A077409(n) with Diophantine companion A077251(n).
FORMULA
a(n) = 10*a(n-1)- a(n-2), a(-1)=7, a(0)=11.
a(n) = 2*T(n+1, 5)+T(n, 5), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 5)= A001079(n).
a(n) = sqrt(25 + 24*A077249(n)^2).
G.f.: (11-7*x)/(1-10*x+x^2).
EXAMPLE
103 = a(1) = sqrt(24*A077249(1)^2 + 25) = sqrt(24*21^2 + 25) = sqrt(10609) = 103.
MATHEMATICA
CoefficientList[Series[(11 - 7 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
PROG
(PARI) a(n)= 2*polchebyshev(n+1, 1, 5)+polchebyshev(n, 1, 5) \\ Charles R Greathouse IV, Jun 11 2011
(PARI) Vec((11-7*x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
CROSSREFS
Sequence in context: A016133 A287833 A155594 * A356128 A173851 A358340
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved