login
A076921
Smallest number such that the highest common factor of pair of successive terms follows the pattern 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, ..., i.e., b(2n-1) = b(2n) = n given by A004526.
1
1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380, 400, 420, 441, 462, 484, 506, 529, 552, 576, 600, 625, 650, 676, 702, 729, 756, 784
OFFSET
1,3
COMMENTS
(1) a(2n) = n^2, a(2n-1) = n(n+1) = twice the n-th triangular number. (2) Geometric mean of the successive squares interleaved between them.
Essentially the same as A002620.
FORMULA
a(n+1) + a(n) = binomial(n+1,2), a(1) = a(2) = 1. - G. C. Greubel, Oct 29 2017
From Stefano Spezia, Nov 16 2024: (Start)
a(n) = (2*n^2 - (-1)^n - 1)/8 for n > 1.
G.f.: x*(1 - x + 2*x^2 - x^4)/((1 - x)^3*(1 + x)).
E.g.f.: (4*x + x*(1 + x)*cosh(x) - (1 - x - x^2)*sinh(x))/4. (End)
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {1, 2, 4, 6}, 50]] (* G. C. Greubel, Oct 29 2017 *)
CROSSREFS
Cf. A004526.
Sequence in context: A088900 A371972 A083392 * A002620 A087811 A025699
KEYWORD
nonn,easy,changed
AUTHOR
Amarnath Murthy, Oct 17 2002
EXTENSIONS
More terms from Philippe Deléham, Jun 20 2005
STATUS
approved