Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Jun 04 2024 16:53:43
%S 2,2,6,26,150,1082,9366,94586,1091670,14174522,204495126,3245265146,
%T 56183135190,1053716696762,21282685940886,460566381955706,
%U 10631309363962710,260741534058271802,6771069326513690646
%N a(n) = Sum_{k>=0} k^n/2^k.
%H Vincenzo Librandi, <a href="/A076726/b076726.txt">Table of n, a(n) for n = 0..200</a>
%H Olivier Golinelli, <a href="https://arxiv.org/abs/2405.16968">Remote control system of a binary tree of switches - II. balancing for a perfect binary tree</a>, arXiv:2405.16968 [cs.DM], 2024. See p. 17.
%H Ramesh L. Srigiriraju, <a href="/A076726/a076726.pdf">Recurrences for A076726</a>
%F a(n) = 2*A000670(n). - _Philippe Deléham_, Mar 06 2004
%F a(n) ~ n! / (log(2))^(n+1). - _Vaclav Kotesovec_, Nov 28 2013
%F From _Jianing Song_, May 04 2022: (Start)
%F a(0) = 2, a(n) = Sum_{k=0..n-1} binomial(n,k)*a(k) for n >= 1.
%F G.f.: Sum_{k>=0} 1/(2^k*(1-k*x)).
%F E.g.f.: 1/(1-exp(x)/2). (End)
%e a(0) = 2 because 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... = 2; a(1) = 2 because 0 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32 + ... = 2.
%e G.f. = 2 + 2*x + 6*x^2 + 26*x^3 + 150*x^4 + 1082*x^5 + 9366*x^6 + 94586*x^7 + ...
%t a[n_] := Sum[(k^n)/(2^k), {k, 0, Infinity}]; Table[ a[n], {n, 0, 18}]
%t a[n_] := (-1)^(n+1) PolyLog[-n, 2] (* _Vladimir Reshetnikov_, Jan 23 2011 *)
%o (PARI) a(n)=abs(polylog(-n, 2)) \\ _Charles R Greathouse IV_, Jul 15 2014
%Y Same as A000629 except for a(0).
%Y A000629, A000670, A002050, A052856, A076726 are all more-or-less the same sequence. - _N. J. A. Sloane_, Jul 04 2012
%K nonn
%O 0,1
%A Charles G. Waldman (cgw(AT)alum.mit.edu), Oct 27 2002
%E More terms from _Robert G. Wilson v_, Oct 29 2002