login
A076525
Numbers n such that sopf(n) = sopf(n+1) - sopf(n-1), where sopf(x) = sum of the distinct prime factors of x.
8
4, 22, 57, 900, 1551, 1920, 4194, 6279, 10857, 19648, 20384, 32016, 63656, 65703, 83271, 84119, 86241, 105570, 145237, 181844, 271328, 271741, 316710, 322953, 331976, 345185, 379659, 381430, 409915, 424503, 490255, 524476, 542565, 550271
OFFSET
1,1
LINKS
EXAMPLE
The sum of the distinct prime factors of 22 is 2 + 11 = 13; the sum of the distinct prime factors of 23 is 23; the sum of the distinct prime factors of 21 is 3 + 7 = 10; and 13 = 23 - 10. Hence 22 belongs to the sequence.
MATHEMATICA
p[n_] := Apply[Plus, Transpose[FactorInteger[n]][[1]]]; Select[Range[3, 10^5], p[ # ] == p[ # + 1] - p[ # - 1] &]
PROG
(Magma) [k:k in [3..560000]| &+PrimeDivisors(k) eq &+PrimeDivisors(k+1)-&+PrimeDivisors(k-1)]; // Marius A. Burtea, Oct 10 2019
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 18 2002
EXTENSIONS
Edited and extended by Ray Chandler, Feb 13 2005
STATUS
approved