login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076497
Number of primes corresponding to n-th primeval number A072857(n).
8
0, 1, 3, 4, 5, 7, 11, 14, 19, 21, 26, 29, 31, 33, 35, 41, 53, 55, 60, 64, 89, 96, 106, 122, 153, 188, 248, 311, 349, 402, 421, 547, 705, 812, 906, 1098, 1162, 1268, 1662, 1738, 1953, 2418, 2920, 3133, 3457, 4483, 4517, 4917, 5174, 5953, 6552, 6799, 8938, 10219
OFFSET
1,3
LINKS
C. K. Caldwell, The Prime Glossary, Primeval Number
G. Villemin's Almanach of Numbers, Nombre Primeval de Mike Keith
Wikipedia, Primeval number.
FORMULA
a(n) = A039993(A072857(n)). - M. F. Hasler, Mar 12 2014
EXAMPLE
a(3) = 3 because the primeval number A072857(3) = 13 can be used to create 3 prime numbers, namely 3, 13 and 31.
a(6) = 7 because the primeval number A072857(7) = 113 can be used to create 7 prime numbers, namely 3, 11, 13, 31, 113, 131 and 311. (The two primes 13 and 31 can be obtained in 2 ways, therefore A075053(113) = 9.)
MATHEMATICA
Needs["DiscreteMath`Combinatorica`"]; f[n_] := Block[{a = Drop[ Sort[ Subsets[ IntegerDigits[n]]], 1], b = c = {}, k = 1, l}, l = Length[a] + 1; While[k < l, b = Append[b, Permutations[ a[[k]] ]]; k++ ]; b = Union[ Flatten[b, 1]]; l = Length[b] + 1; k = 1; While[k < l, c = Append[c, FromDigits[ b[[k]] ]]; k++ ]; Count[ PrimeQ[ Union[c]], True]]; d = -1; Do[ b = f[n]; If[b > d, Print[b]; d = b], {n, 1, 10^6}]
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Lekraj Beedassy, Nov 08 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 12 2002
Links fixed by Charles R Greathouse IV, Aug 13 2009
a(40)-a(54) from Giovanni Resta, Nov 06 2013
STATUS
approved