login
A075504
Stirling2 triangle with scaled diagonals (powers of 9).
10
1, 9, 1, 81, 27, 1, 729, 567, 54, 1, 6561, 10935, 2025, 90, 1, 59049, 203391, 65610, 5265, 135, 1, 531441, 3720087, 1974861, 255150, 11340, 189, 1, 4782969, 67493007, 57041334, 11160261, 765450, 21546, 252, 1
OFFSET
1,2
COMMENTS
This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(9*z) - 1)*x/9) - 1.
Row sums give A075508(n), n >= 1. The columns (without leading zeros) give A001019 (powers of 9), A076008-A076013 for m=1..7.
LINKS
FORMULA
a(n, m) = (9^(n-m)) * stirling2(n, m).
a(n, m) = Sum_{p=0..m-1} (A075513(m, p)*((p+1)*9)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 9m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-9k*x), m >= 1.
E.g.f. for m-th column: (((exp(9x) - 1)/9)^m)/m!, m >= 1.
EXAMPLE
[1]; [9,1]; [81,27,1]; ...; p(3,x) = x(81 + 27*x + x^2).
From Andrew Howroyd, Mar 25 2017: (Start)
Triangle starts
* 1
* 9 1
* 81 27 1
* 729 567 54 1
* 6561 10935 2025 90 1
* 59049 203391 65610 5265 135 1
* 531441 3720087 1974861 255150 11340 189 1
* 4782969 67493007 57041334 11160261 765450 21546 252 1
(End)
MATHEMATICA
Flatten[Table[9^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
PROG
(PARI) for(n=1, 11, for(m=1, n, print1(9^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Columns 2-7 are A076008-A076013.
Sequence in context: A318935 A347490 A038291 * A373628 A138342 A101678
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved