login
A075500
Stirling2 triangle with scaled diagonals (powers of 5).
10
1, 5, 1, 25, 15, 1, 125, 175, 30, 1, 625, 1875, 625, 50, 1, 3125, 19375, 11250, 1625, 75, 1, 15625, 196875, 188125, 43750, 3500, 105, 1, 78125, 1984375, 3018750, 1063125, 131250, 6650, 140, 1, 390625, 19921875
OFFSET
1,2
COMMENTS
This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(5*z) - 1)*x/5) - 1.
LINKS
FORMULA
a(n, m) = (5^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*5)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 5m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-5k*x), m >= 1.
E.g.f. for m-th column: (((exp(5x)-1)/5)^m)/m!, m >= 1.
EXAMPLE
[1]; [5,1]; [25,15,1]; ...; p(3,x) = x(25 + 15*x + x^2).
From Andrew Howroyd, Mar 25 2017: (Start)
Triangle starts
* 1
* 5 1
* 25 15 1
* 125 175 30 1
* 625 1875 625 50 1
* 3125 19375 11250 1625 75 1
* 15625 196875 188125 43750 3500 105 1
* 78125 1984375 3018750 1063125 131250 6650 140 1
(End)
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 5^n, 9); # Peter Luschny, Jan 28 2016
MATHEMATICA
Flatten[Table[5^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[5^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
PROG
(PARI) for(n=1, 11, for(m=1, n, print1(5^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Columns 1-7 are A000351, A016164, A075911-A075915. Row sums are A005011(n-1).
Sequence in context: A193685 A174358 A264131 * A096645 A376582 A140713
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved