login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074904
Decimal expansion of trace of Gaussian operator.
0
1, 4, 4, 4, 6, 2, 3, 9, 6, 2, 4, 6, 1, 6, 0, 8, 1, 5, 8, 8, 2, 4, 9, 9, 0, 9, 0, 5, 2, 5, 4, 8, 3, 2, 0, 3, 8, 1, 3, 6, 4, 2, 0, 7, 1, 9, 7, 8, 3, 0, 7, 7, 9, 1, 4, 9, 5, 8, 4, 3, 5, 0, 7, 4, 6, 0, 7, 4, 3, 5, 2, 9, 6, 4, 1, 5, 4, 6, 7, 3, 2, 0, 8, 1, 8, 1, 3
OFFSET
0,2
REFERENCES
Marius Iosifescu, and Cor Kraaikamp, Metrical Theory of Continued Fractions, Springer, 2002, p. 134.
LINKS
Hervé Daudé, Philippe Flajolet and Brigitte Vallée, An analysis of the Gaussian algorithm for lattice reduction, in: L. M. Adleman and M. D. Huang (eds.), Algorithmic Number Theory, First International Symposium, ANTS-I Ithaca, NY, USA, May 6-9, 1994, Proceedings, Lecture Notes in Computer Science, Vol. 877, Springer, Berlin, Heidelberg, 1994, pp. 144-158; Inria preprint.
Hervé Daudé, Philippe Flajolet and Brigitte Vallée, An average-case analysis of the Gaussian algorithm for lattice reduction, Combinatorics, Probability and computing, Vol. 6, No. 4 (1997), pp. 397-433; Inria preprint.
FORMULA
From Amiram Eldar, May 27 2021: (Start)
Equals Sum_{m>=1} 1/(tau(m)^4 + tau(m)^2), where tau(m) = (m + sqrt(m^2+4))/2.
Equals 7/2 - 7/(2*sqrt(2)) - 2/sqrt(5) - (1/2) * Sum_{k>=2} (-1)^k * binomial(2*k,k)*(zeta(2*k) - 1 - 1/2^(2*k))*(k - 1)/(k + 1). (End)
EXAMPLE
0.14446239624616081588249909052548320381...
MATHEMATICA
RealDigits[7/2 - 7/(2 Sqrt[2]) - 2/Sqrt[5] + NSum[(-1)^k * Binomial[2*k, k]*(Zeta[2*k] - 1 - 1/2^(2*k))*(k - 1)/(k + 1), {k, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 500]/2, 10, 100][[1]] (* Amiram Eldar, May 27 2021 *)
CROSSREFS
Sequence in context: A342576 A370389 A241295 * A010304 A164821 A348677
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Sep 15 2002
EXTENSIONS
Offset corrected and more terms added by Amiram Eldar, May 27 2021
STATUS
approved