login
A074783
a(n) = floor(1/sin(x(n))) where x(n) is Pi truncated at the n-th decimal digit.
1
7, 24, 627, 1687, 10792, 376847, 1530011, 18660269, 278567575, 1695509434, 11136696004, 102111268281, 1260654956981, 10725187563685, 308788493220129, 4193528956200935, 25999253094360135, 118166387818704584
OFFSET
0,1
COMMENTS
a(n+1) = a(n) for n = 31, 49, 53, 64, 70, 76, 84, 96, 105, 115, 120, 127, ...
FORMULA
Is there a formula for lim m_{n -> oo} log(a(n))/n >= 2?
EXAMPLE
x(4)=3.1415 and 1/sin(x(4))=10792.889... hence a(4)=10792.
PROG
(PARI) a(n)=floor(1/sin(floor(Pi*10^n)/10^n))
CROSSREFS
Sequence in context: A197791 A009652 A012777 * A286742 A322563 A065658
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Sep 07 2002
STATUS
approved