login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least k such that floor(3^n/k) is prime.
1

%I #12 Jan 04 2017 02:45:32

%S 1,3,2,6,14,23,2,6,11,14,14,32,2,6,5,15,14,42,5,7,21,63,25,61,19,53,

%T 97,38,19,55,32,23,69,110,38,114,115,31,5,15,45,29,77,7,21,63,189,37,

%U 111,226,14,42,113,44,5,15,45,135,14,38,114,137,32,37,49,147,5,15,45,79,2

%N Least k such that floor(3^n/k) is prime.

%C From _Robert Israel_, Jan 03 2017: (Start)

%C a(n+1) <= 3*a(n), with equality if and only if a(n+1) is divisible by 3.

%C For n > 1, a(n) <= floor(3^n/p) where p is the greatest prime <= 3^(n/2)-1.

%C a(n) = 2 if and only if n is in A028491. (End)

%H Robert Israel, <a href="/A074718/b074718.txt">Table of n, a(n) for n = 1..2000</a>

%p f:= proc(n) local t,k;

%p t:= 3^n;

%p for k from 2 to t/3 do if isprime(floor(t/k)) then return k fi od:

%p end proc:

%p f(1):= 1:

%p map(f, [$1..100]); # _Robert Israel_, Jan 03 2017

%o (PARI) a(n)=if(n<0,0,k=1; while(isprime(floor(3^n/k))==0,k++); k)

%Y Cf. A028491.

%K easy,nonn

%O 1,2

%A _Benoit Cloitre_, Sep 04 2002