login
A074667
Seven-digit distinct-digit primes.
14
1023467, 1023487, 1023697, 1023769, 1023857, 1023947, 1024357, 1024379, 1024579, 1024589, 1024693, 1024697, 1024783, 1024853, 1024957, 1024963, 1024987, 1025347, 1025483, 1025693, 1025749, 1025789, 1025839, 1025873, 1025897, 1026359, 1026439
OFFSET
1,1
COMMENTS
The last term is a(33950) = 9876413. - Giovanni Resta, Mar 19 2013
There are 33,950 terms in the sequence. - Harvey P. Dale, Jun 01 2024
LINKS
Daniel Starodubtsev, Table of n, a(n) for n = 1..33950 (complete sequence, terms 1..10000 from Nathaniel Johnston)
EXAMPLE
a(1)=1023467 because it is the first (smallest) 7-digit prime with all distinct digits.
MAPLE
lim:=pi(1026439): for n from pi(1000000) to lim do p:=ithprime(n): d:=[op(convert(p, base, 10))]: ddig:=true: for k from 0 to 9 do if(numboccur(k, d)>1)then ddig:=false: break: fi: od: if(ddig)then printf("%d, ", p): fi: od: # Nathaniel Johnston, Jun 22 2011
MATHEMATICA
Select[Range[1023457, 9876543, 2], Length[Union[IntegerDigits[ # ]]]==7 &&PrimeQ[ # ]&]
Select[FromDigits/@Permutations[Range[0, 9], {7}], IntegerLength[#]==7&&PrimeQ[#]&] (* Harvey P. Dale, Jun 01 2024 *)
PROG
(PARI) is(n)=isprime(n) && #digits(n)==7 && #Set(digits(n))==7 \\ Charles R Greathouse IV, Feb 11 2017
CROSSREFS
The first differences are in A074668.
Cf. A073532 (Number of n-digit primes with all digits distinct). - Jon E. Schoenfield, Aug 13 2017
Sequence in context: A254304 A346266 A218019 * A235159 A235695 A206053
KEYWORD
fini,full,nonn,base,easy
AUTHOR
Zak Seidov, Aug 30 2002
STATUS
approved