login
A074457
Consider surface area of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d.
6
7, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6
OFFSET
1,1
REFERENCES
Nenad Cakic, Dusko Letic, and Branko Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
LINKS
Dusko Letic, Nenad Cakic, Branko Davidovic, and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22. - From N. J. A. Sloane, Sep 04 2012
Eric Weisstein's World of Mathematics, Hypersphere.
FORMULA
Equals 2 + A074455.
EXAMPLE
7.256946404860576780132838388690769236619017237183214857509879678777...
MATHEMATICA
RealDigits[ FindMinimum[ -n*Pi^(n/2)/(n/2)!, {n, 7}, WorkingPrecision -> 125] [[2, 1, 2]]] [[1]]
x /. FindRoot[ PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)
CROSSREFS
Surface area is A074456. Cf. A072478, A072479, A074455.
Sequence in context: A066903 A194886 A196764 * A200237 A072761 A337357
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Aug 22 2002
EXTENSIONS
Corrected by Eric W. Weisstein, Aug 31 2003
Corrected by Martin Fuller, Jul 12 2007
STATUS
approved