login
A074208
Least k > 1 such that n divides sigma(k) - k.
1
2, 6, 4, 9, 14, 6, 8, 10, 15, 14, 20, 24, 27, 22, 16, 12, 39, 24, 48, 34, 18, 20, 52, 90, 40, 46, 42, 28, 68, 78, 32, 56, 45, 62, 84, 24, 70, 48, 66, 44, 63, 30, 50, 82, 78, 52, 116, 90, 75, 40, 132, 96, 80, 42, 36, 106, 99, 68, 148, 120, 130, 118, 64, 56, 117, 54, 136, 112
OFFSET
1,1
LINKS
FORMULA
Conjecture: Sum_{k=1..n} a(k) = O(n^{2+epsilon}) for any epsilon > 0.
Between n = 90000 and 100000, Sum_{k=1..n} a(k)/n^2 slowly but not monotonically increases from 1.0007 to 1.0023. At n = 10^6, it's about 1.0147. - David A. Corneth, Oct 23 2017
MATHEMATICA
a = ConstantArray[1, 68]; k = 1; While[Length[vac = Flatten[Position[a, 1]]] > 0, k++; a[[Intersection[Divisors[DivisorSigma[1, k] - k], vac]]] *= k]; a (* Ivan Neretin, May 15 2015 *)
lk[n_]:=Module[{k=2}, While[!Divisible[DivisorSigma[1, k]-k, n], k++]; k]; Array[lk, 70] (* Harvey P. Dale, Oct 23 2017 *)
PROG
(PARI) a(n)=if(n<0, 0, s=2; while((sigma(s)-s)%n>0, s++); s)
(PARI) first(n)=my(res = vector(n), todo = n - 1, k = 2); res[1] = 2; while(todo > 0, d = divisors(sigma(k) - k); for(i=2, #d, if(d[i] <= n && res[d[i]] == 0, res[d[i]] = k; todo--)); k++); res \\ David A. Corneth, Oct 23 2017
CROSSREFS
Cf. A070982.
Sequence in context: A342808 A201895 A192408 * A362229 A333775 A334205
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Sep 17 2002
STATUS
approved