login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073631
Nonprimes k such that k divides 3^(k-1) - 2^(k-1).
5
1, 65, 133, 529, 793, 1105, 1649, 1729, 2059, 2321, 2465, 2701, 2821, 4187, 5185, 6305, 6541, 6601, 6697, 6817, 7471, 7613, 8113, 8911, 10585, 10963, 11521, 13213, 13333, 13427, 14701, 14981, 15841, 18721, 19171, 19201, 19909, 21349, 21667, 22177, 26065
OFFSET
1,2
COMMENTS
Terms 1,65,2059,6305,19171,... are also in A001047
All primes p>3 divide 3^(p-1) - 2^(p-1). It appears that a(1) = 1 and a(4) = 529 = 23^2 are the only perfect squares in a(n). Most terms of a(n) are squarefree. First 50 nonsquarefree terms of a(n) are the multiples of 23^2. Conjecture: All nonsquarefree terms of a(n) are the multiples of 23^2. Numbers n such that k=n*23^2 divides 3^(k-1) - 2^(k-1) are listed in A130058 = {1, 67, 89, 133, 199, 331, 617, 793, 881, 5281, 8911, 1419, 13333,...}. - Alexander Adamchuk, May 04 2007
Contains all Carmichael numbers (A002997) that are not divisible by 3. - Robert Israel, May 19 2015
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
MAPLE
1, op(select(n -> (3 &^ (n-1) - 2 &^ (n-1) mod n = 0 and not isprime(n)), [seq(2*i+1, i=1..10000)])); # Robert Israel, May 19 2015
MATHEMATICA
Select[Range[3 10^4], ! PrimeQ[#] && Mod[3^(# - 1) - 2^(# - 1), #] == 0 &] (* Vincenzo Librandi, May 20 2015 *)
Select[Range[3*10^4], PowerMod[3, # - 1, #] == PowerMod[2, # - 1, #] && !PrimeQ[#] &] (* Amiram Eldar, Mar 27 2021 *)
PROG
(PARI) isok(n) = ! isprime(n) && !((3^(n-1)-2^(n-1)) % n); \\ Michel Marcus, Nov 28 2013
(Magma) [n: n in [1..3*10^4] | not IsPrime(n) and IsDivisibleBy(3^(n-1)-2^(n-1), n)]; // Vincenzo Librandi, May 20 2015
CROSSREFS
Cf. A001047 (3^n - 2^n), A002997.
Cf. A038876, A097934 (primes p such that p divides 3^((p-1)/2) - 2^((p-1)/2)).
Cf. A130059, A130058 (numbers n such that k=n*23^2 divides 3^(k-1) - 2^(k-1)).
Sequence in context: A348759 A357651 A294169 * A285300 A194002 A092226
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Aug 29 2002
EXTENSIONS
Term 14701 added and more terms from Michel Marcus, Nov 28 2013
STATUS
approved