login
A073582
Numbers k such that S(k) = k/2, where S(k) is the Kempner function A002034.
5
6, 8, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
OFFSET
1,1
COMMENTS
Unique sequence such that A033677(a(m))-A033676(a(m)) approaches a(m)/2. - Joseph Biberstine, Dec 25 2004
Numbers k such that A000203(k) = 3 + k/2 + k. - Melvin Peralta, Aug 15 2016
Is this sequence "Twice the odd primes and 8"? - Joerg Arndt, Sep 13 2016
LINKS
MATHEMATICA
Select[Range@ 514, Function[n, m = 1; While[! Divisible[m!, n], m++]; m == n/2]] (* or *)
Select[Range@ 514, DivisorSigma[1, #] == 3 + #/2 + # &] (* Michael De Vlieger, Aug 15 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Aug 28 2002
STATUS
approved