OFFSET
1,1
COMMENTS
k-1 and k+3 are not squarefree. Proof: k is odd, otherwise k or k+2 would be divisible by 4. Thus k+1 is even and not divisible by 4, hence k-1 and k+3 are divisible by 4.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
MATHEMATICA
f[upto_]:=Module[{pp=PrimePi[upto], n}, lst=Partition[Complement[Range[upto], Prime[Range[pp]]], 3, 1]; Transpose[Select[lst, And@@SquareFreeQ/@#&]][[1]]]; f[1200] (* Harvey P. Dale, Mar 21 2011 *)
PROG
(PARI) isok1(k) = !isprime(k) && issquarefree(k); \\ A000469
isok(k) = isok1(k) && isok1(k+1) && isok1(k+2); \\ Michel Marcus, Mar 25 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 22 2002
EXTENSIONS
Edited by Klaus Brockhaus, Aug 07 2006
STATUS
approved