login
A072941
Least multiple of n having no prime gaps.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 30, 11, 12, 13, 210, 15, 16, 17, 18, 19, 60, 105, 2310, 23, 24, 25, 30030, 27, 420, 29, 30, 31, 32, 1155, 510510, 35, 36, 37, 9699690, 15015, 120, 41, 210, 43, 4620, 45, 223092870, 47, 48, 49, 150, 255255, 60060, 53, 54, 385
OFFSET
1,2
COMMENTS
a(n) = smallest m such that m is a multiple of n and in the prime factorization of m every prime between the smallest prime factor of n and the largest appears at least once.
A073490(a(n))=0; a(n)=n iff A073490(A007947(n))=0; A006530(a(n)) = A006530(n); A020639(a(n)) = A020639(n); A001221(n) <= A001221(a(n)); A001221(a(n))=A049084(A006530(n))-A049084(A020639(n))+1; A001222(n) <= A001222(a(n)); A001222(a(n)) + A001221(n) = A001221(a(n)) + A001222(n).
LINKS
FORMULA
EXAMPLE
a(99)=a(3*3*11)=3*3*5*7*11=3465.
PROG
(Haskell)
a072941 n = product $ zipWith (^) ps $ map (max 1) es where
(ps, es) = unzip $ dropWhile ((== 0) . snd) $
zip a000040_list $ a067255_row n
-- Reinhard Zumkeller, Dec 21 2013
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Aug 12 2002
EXTENSIONS
Example corrected by Nadia Heninger, Jul 06 2005
STATUS
approved